本试剂盒创新性地采用过柱纯化的方法,能够快速、温和、高效地裂解动物组织或细胞,有效提取总蛋白。试剂盒同时提供变性和天然两种裂解液,用户可根据下游实验需求进行选择。整个提取过程仅需要1~8min,由于采用过柱纯化技术,最小可处理20μL样本与裂解液混合物,最大可达500μL,提取的蛋白溶液浓度可达2~8mg/mL,并可有效避免蛋白丢失。所提蛋白可采用BCA法进行蛋白定量分析(货号:ZJ101或ZJ102),但不宜使用Omni-RapidTM快速蛋白定量试剂盒(货号:ZJ103)。
操作简单快速
最快1min即可得到变性总蛋白无蛋白丢失
可打开DNA双链,高效获取与DNA结合的蛋白小样本量、高得率
最小可处理20μL样本与裂解液混合物,提取的蛋白溶液浓度可达2~8mg/mL适用多种实验
含有两种裂解液,既可用于提取变性蛋白质,也可提取天然蛋白质提取变性总蛋白
1. 将纯化柱及收集管放在冰上预冷;
2. 样品处理(取适当量的变性裂解液,在使用前数分钟将蛋白酶抑制剂混合液 按1:100加入其中;PC201plus已包含蛋白酶抑制剂混合液,PC201则需额外购买<货号:grf101>。)
2a. 贴壁细胞:将预冷的1×PBS(货号:PS110)直接加入培养板、培养皿或培养瓶中清洗贴壁细胞,吸去上清。按照附表(文末)中将相应体积的变性裂解液均匀地加入整个器皿表面,用移液器吹打几次;
2b. 悬浮细胞:低速离心收集细胞,在1.5 mL离心管中加入预冷的1×PBS,涡旋震荡,3,000rpm离心2~3min清洗细胞。吸去多余上清,留下与细胞相同体积的PBS,涡旋震荡重悬细胞。加入附表中相应体积的变性裂解液,涡旋震荡裂解细胞;
注意:
①部分未完全裂解的细胞不会影响后续蛋白提取效果;
②加入裂解液后,如果细胞裂解物太过粘稠,无法用200~1,000μL吸头吹打,可将细胞裂解物直接倒入纯化柱中,进行后续操作。
2c. 组织样本:将15~20mg组织放置于纯化柱上,用塑料研磨棒扭转研磨50~60次,加入200μL变性裂解液,继续研磨30~60次。如样本起始量较大或者较小,需按比例调整相应裂解液的用量;
注意:塑料研磨棒可以重复使用,请用蒸馏水彻底冲洗干净,并用纸巾擦干。
3. 离心
3a. 贴壁细胞或悬浮细胞:将裂解后的细胞转移到预冷的纯化柱套管中,14,000~16,000 rpm离心30 s取出;
3b. 组织样本:盖上纯化柱盖子室温孵育1~2 min,14,000~16,000 rpm离心1~2 min取出;
4. 立刻将收集管放置于冰上,弃去纯化柱,变性总蛋白提取完成。
提取天然总蛋白
1. 将天然裂解液、纯化柱及收集管放在冰上预冷;
2.样品处理(取适当量的天然裂解液,在使用前数分钟将蛋白酶抑制剂混合液按1:100加入其中;PC201plus已包含蛋白酶抑制剂混合液,PC201则需额外购买<货号:grf101>。)
2a. 贴壁细胞:将预冷的1×PBS(货号:PS110)直接加入培养板,培养皿或培养瓶中清洗贴壁细胞,吸去上清。按照附表中将相应体积的天然裂解液均匀地加入整个器皿表面,放置于冰上孵育3~5min,用移液器吹打几次;
2b. 悬浮细胞:低速离心收集细胞,在1.5mL离心管中加入预冷的1×PBS,涡旋震荡,3,000rpm离心2~3min清洗细胞。吸去多余上清,留下与细胞相同体积的PBS,涡旋震荡重悬细胞。加入附表中相应体积的天然裂解液,涡旋震荡裂解细胞15s。将离心管放置于冰上3~5min,然后涡旋震荡10s;
注意:
①部分未完全裂解的细胞不会影响后续蛋白提取效果;
②加入裂解液后,如果细胞裂解物太过粘稠,无法用200~1,000 μL吸头吹打,可将细胞裂解物直接倒入纯化柱中,进行后续操作。
2c. 组织样本:将15~20mg组织放置于纯化柱上,用塑料研磨棒扭转研磨50~60次,加入200μL天然裂解液,继续研磨30~60次。如样本起始量较大或者较小,需按比例调整相应裂解液的用量;
注意:塑料研磨棒可以重复使用,请用蒸馏水彻底冲洗干净,并用纸巾擦干。
3.离心
3a. 贴壁细胞或悬浮细胞:将裂解后的细胞转移到预冷的纯化柱套管中,14,000~16,000rpm离心30s取出;
3b. 组织样本:开盖冰上孵育5min,盖上纯化柱盖子,4℃,14,000~16,000rpm离心1~2min取出;
4.立刻将收集管放置于冰上,弃去纯化柱,变性总蛋白提取完成。
附表 细胞数量与所需裂解液体积之间的关系
1. 若使用本试剂盒裂解液裂解样本所得产物比较粘稠,此为正常现象;
2. 为了您的安全和健康,请穿实验服并戴一次性手套操作;
3. 本产品仅限科研使用。
Guo, Y., You, Y., Shang, F. F., Wang, X., Huang, B., Zhao, B., ... & Xia, Y. (2023). iNOS aggravates pressure overload-induced cardiac dysfunction via activation of the cytosolic-mtDNA-mediated cGAS-STING pathway. Theranostics, 13(12), 4229.(IF 12.4)
Liu, F., Zhang, X., Peng, Y., Zhang, L., Yu, Y., Hua, P., ... & Zhang, L. (2021). miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Reports, 35(10), 109225.(IF 9.423)
Qi, F., Wang, Y., Yu, B., & Li, F. (2023). Identification of RECK as a protective prognostic indicator and a tumor suppressor through regulation of the ERK/MAPK signaling pathway in gastric cancer. Journal of Translational Medicine, 21(1), 766.(IF 7.4)
Zhao, Y., Zhang, M., Dou, Y., Du, K., Liu, X., & Zhao, Y. (2022). DDAH1/ADMA Regulates Adiponectin Resistance in Cerebral Ischemia via the ROS/FOXO1/APR1 Pathway. Oxidative Medicine and Cellular Longevity, 2022.(IF 7.31)
Zhu, L., Li, B., Li, R., Hu, L., Zhang, Y., Zhang, Z., ... & Zhang, X. (2023). METTL3 suppresses pancreatic ductal adenocarcinoma progression through activating endogenous dsRNA-induced anti-tumor immunity. Cellular Oncology, 1-13.(IF 7.051)
Zhang, Y., Lin, W., Jiang, W., & Wang, Z. (2022). MicroRNA-18 facilitates the stemness of gastric cancer by downregulating HMGB3 though targeting Meis2. Bioengineered, 13(4), 9959-9972.(IF 6.832)
Zhou, G., Wang, X., Guo, M., Qu, C., Gao, L., Yu, J., ... & Guo, Y. (2023). Mitophagy deficiency activates stimulator of interferon genes activation and aggravates pathogenetic cardiac remodeling. Genes & Diseases.(IF 6.8)
Wang, Z., Ao, X., Shen, Z., Ao, L., Wu, X., Pu, C., ... & Xu, X. (2021). TNF-α augments CXCL10/CXCR3 axis activity to induce Epithelial-Mesenchymal Transition in colon cancer cell. International Journal of Biological Sciences, 17(11), 2683.(IF 6.58)
Wang, Z., Li, C., He, X., Xu, K., Xue, Z., Wang, T., ... & Liu, X. (2022). Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway. Food & Function, 13(7), 3946-3956.(IF 6.317)
Zhao, Y., Ma, X., Zhou, Y., Xie, J., Liu, X., & Zhao, Y. (2021). DDAH-1, via regulation of ADMA levels, protects against ischemia-induced blood-brain barrier leakage. Laboratory Investigation, 101(7), 808-823.(IF 5.662)
Xu, H. W., Fang, X. Y., Liu, X. W., Zhang, S. B., Yi, Y. Y., Chang, S. J., ... & Wang, S. J. (2023). α-Ketoglutaric acid ameliorates intervertebral disk degeneration by blocking the IL-6/JAK2/STAT3 pathway. American Journal of Physiology-Cell Physiology, 325(4), C1119-C1130.(IF 5.5)
Lin, J., Lan, Y., **ang, D., Ma, R., Chen, Q., Ding, K., & Lu, J. (2023). IL-33 promotes pancreatic β-cell survival and insulin secretion under diabetogenic conditions through PPARγ. European Journal of Pharmacology, 959, 176059.(IF 5)
Guo, R., Meng, Q., Wang, B., & Li, F. (2021). Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli Lipopolysaccharide (LPS) induced inflammation. International Immunopharmacology, 94, 107474.(IF 4.932)
Zhou J, Guo C, Wu H, et al. Dnmt3a is downregulated by Stat5a and mediates G0/G1 arrest by suppressing the miR-17-5p/Cdkn1a axis in Jak2V617F cells[J]. BMC cancer, 2021, 21(1): 1-17.(IF 4.638)
Liu, F., Chen, J. F., Wang, Y., Guo, L., Zhou, Q. M., Peng, C., & Xiong, L. (2019). Cytotoxicity of lanostane-type triterpenoids and ergosteroids isolated from Omphalia lapidescens on MDA-MB-231 and HGC-27 cells. Biomedicine & Pharmacotherapy, 118, 109273.(IF 4.545)
Daren, L., Dan, Y., Jinhong, W., & Chao, L. (2023). NIK‐mediated reactivation of SIX2 enhanced the CSC‐like traits of hepatocellular carcinoma cells through suppressing ubiquitin–proteasome system. Environmental Toxicology.(IF 4.5)
Zhou, T., Liao, W., Wang, X., Wang, Y., Yang, P., Zuo, L., & Zhang, X. (2023). Low temperature reduces occludin expression in bronchial epithelial cells: Implications in cold-induced asthma. Molecular Immunology, 157, 176-185.(IF 4.174)
Lu, Y., Wang, W., & Tan, S. (2022). EHD1 promotes the cancer stem cell (CSC)-like traits of glioma cells via interacting with CD44 and suppressing CD44 degradation. Environmental toxicology, 10.1002/tox.23592.(IF 4.109)
Dai, Y., Yu, T., Yu, C., Lu, T., Zhou, L., Cheng, C., & Ni, H. (2022). ISG15 enhances glioma cell stemness by promoting Oct4 protein stability. Environmental toxicology, 10.1002/tox.23556.(IF 4.109)
Fan, W., Chen, L., Wu, X., & Zhang, T. (2021). Circ_0031242 Silencing Mitigates the Progression and Drug Resistance in DDP-Resistant Hepatoma Cells by the miR-924/POU3F2 Axis. Cancer Management and Research, 13, 743.(IF 3.989)
Qi, Y., Han, Y., Chen, C., Xue, Y., Jiao, N., & Li, X. (2022). Inhibition of microRNA-665 Alleviates Septic Acute Kidney Injury by Targeting Bcl-2. Journal of Healthcare Engineering, 2022, 2961187-2961187.(IF 3.822)